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Abstract. In video-sharing websites and surveillance scenarios, there
are often a large amount of face videos. This paper proposes a joint
dictionary learning and subspace segmentation method for video-based
face recognition (VFR). We assume that the face images from one sub-
ject video lie in a union of multiple linear subspaces, and there exists a
global dictionary to represent these images and segment them to their
corresponding subspaces. This assumption results in a ”chicken and egg”
problem, where subspace clustering and dictionary learning are mutually
dependent. To solve this problem, we propose a joint optimization model
that includes three parts. The first part seeks a low-rank representation
for subspace segmentation; the second part encourages the dictionary
to accurately represent the data while tolerating frame-wise corruption
or outliers; and the third part is a regularization on the dictionary. An
alternating minimization method is employed as an efficient solution to
the proposed joint formulation. In each iteration, it alternately learns
the subspace structure and the dictionary by improving the learning re-
sults. Experiments on three video-based face databases show that our
approach consistently outperforms the state-of-the-art methods.

1 Introduction

Video-based face recognition (VFR) has become an active research topic in re-
cent years in the computer vision community [1–7]. Compared to still-image face
recognition, the task in video-to-video recognition is to efficiently exploit multi-
ple frames, and to build a model robust against variations of the same subject
appearing in different videos. This is challenging because faces detected from
videos are usually acquired under non-ideal acquisition conditions in which illu-
mination, pose, and facial expression variations dominate. Moreover, the cropped
face images are often of low resolution, which makes many local feature methods
inapplicable.

To solve the video-based face recognition problem, researchers have pro-
posed numerous methods. Early frame-based attempts include fusing frame-
based recognition results by voting [8], finding the minimal distance between
two frames across videos [9], and matching the key frames with exemplars in the
gallery [10]. Most of the recent approaches are based on either temporal models
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or image sets. Some researchers extract spatial-temporal representations from
videos to enhance face recognition [11, 12]. Others discard the temporal infor-
mation and treat the videos as image sets [1–3, 13–16]. The problem of VFR
then becomes a more general image-set matching or classification problem. To
solve this problem, many statistical models were proposed to describe the image
sets as linear subspaces or manifolds. Under the linear subspace assumptions,
methods such as [13], [14] (DCC) measure the distance or similarity between
two subspaces by computing the angles between the principle components. Hu
et al. [1] (SANP) find the minimal distance of the two nearest points, which can
be sparsely approximated from the samples of their respective subspaces. Under
the nonlinear manifold assumptions, [17] defines the distance between subspaces
over Grassmann manifold, and then constructs the Sparse Approximated Nearest
Subspaces (SANS) adaptively from the samples of the query image set. It ap-
proaches the nearest point to the reference point by minimizing the joint sparse
representation error. Wang et al. [15] proposed Manifold-to-Manifold Distance
learning (MMD), which partitions a manifold into several local linear models and
integrates the pair-wise distances. They also extended MMD to a supervised ver-
sion called Manifold Discriminant Analysis(MDA) [16]. Moreover, Wang et al. [2]
represent image sets with their covariance matrices, and compute the distance
between manifolds by mapping the covariance matrix from the Riemannian man-
ifold to a Euclidean space (Cov+PLS). While those methods have received great
success, Cui et al. [3] raised an uncertainty issue that commonly arises when
partitioning a nonlinear manifold into local linear subspaces. They argue that
face images with similar appearance can be clustered to different subspaces or
clusters in different video sequences, making the distance between two manifolds
ill-defined. They proposed to align the gallery set and the query set with respect
to a pre-defined reference sequence [3] (ImgSetAlign). This image set alignment
issue is also addressed in [18]. Given a well-aligned, high quality gallery, they
combine three tasks in a unified framework: aligning faces geometrically, per-
forming recognition, and selecting good quality frames (CAR). Another image
set method proposed by Lu et. al [19] computes the holistic multiple order statis-
tics features of the image sets, and performs multi-kernel metric learning. These
methods have achieved the state of the art on several public face databases.

Most recently, sparse representation for videos has attracted attention. Al-
though the advantage of dictionary learning for robust face recognition in still
images has been widely recognized [20], dictionary learning for VFR is relatively
new. Chen et al. [4,5] proposed a joint sparse representation method under a min-
imal reconstruction error criterion. It divides a video sequence into K partitions
in order to capture different poses or illumination conditions. Next, partition-
level sub-dictionaries are learned by minimizing the total reconstruction error
within the partition. Experiments have demonstrated that the dictionary-based
method also achieved the state of the art.

The dictionary-based method falls into the category of image-set methods.
The basic assumption can be summarized as follows: all face images from one
subject video lie in a union of multiple linear subspaces. In each of those sub-
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Fig. 1. An overview of our method. Sequences of cropped faces detected from videos
are sent as inputs to our Jointly Learning Dictionary and Subspace Structure (JLDSS)
algorithm. It learns class-specific dictionaries and the corresponding low-rank represen-
tations simultaneously. Examples of face sequences X1, X2, our dictionaries D1, D2,
and the low-rank matrices Z1, Z2 are shown in the figure. The low-rank matrices can
also be employed for video segmentation. Such examples are shown by the red dashed
lines on Z1 and Z2.

spaces, there exists a sub-dictionary that can represent the data well. However,
as in other manifold-partitioning-to-multiple-linear-subspaces methods, the clus-
tering uncertainty issue recognized in [3] also exists here. Subspace clustering and
dictionary learning are mutually beneficial and dependent on one another. To
learn the sub-dictionaries, or perform any within subspace operations in general,
subspace clustering, or equivalently ”sequence partitioning” in [4] and [5], needs
to be performed first. Yet it is impossible to define an ”optimal” clustering result
until the final reconstruction error is obtained. In other words, one needs to have
the dictionaries in advance for reconstruction to make an appropriate choice of
subspace clustering that captures the true characteristics of the video.

To address the above issue, we propose a joint learning framework that simul-
taneously learns a global dictionary and reveals the intrinsic subspace structure
of the video. We assume that faces from one subject video lie in multiple linear
subspaces, and there exists a global dictionary that can represent all the faces
and reflects the subspace structure of the image set. The objective function of
our model includes three parts. The first part forces the data to lie in multiple
linear subspaces, in each of which one point can be represented by a set of bases
called a dictionary that spans the same linear subspace; the second part encour-
ages the dictionary to represent the data well with tolerance to outliers; the third
part regularizes the learned dictionary. An alternating minimization method is
employed as an efficient solution to the joint formulation. In each iteration, it
alternately learns the subspace structure and the dictionary by improving the
learning results.
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The main contributions of our work are summarized as follows:

• We present a joint subspace and dictionary learning framework for VFR.
Unlike the partition-then-learn framework, our approach implicitly learns
the subspace segmentation along with a global dictionary simultaneously.
The video-dictionaries are compact and compliant to the subspace structure
of the data, meaning the more dynamic videos with larger variation are
automatically assigned more dictionary atoms than the more static videos.

• Our model is robust to variation and frame-wise corruption. Since we model
the same face under various poses and illumination as data points lying in
multiple subspaces, it allows our model to handle data with large variation.
Moreover, by minimizing the l2,1 norm of the reconstruction error matrix, we
essentially fuse the frame-wise results together while tolerating corruption
and outliers, making our model robust.

• Experiments shows that our method not only achieves the best recognition
performances on three standard databases, but also yields interpretable low-
rank representations and more natural dictionaries.

1.1 Related Work

There are a couple of recent works focusing on subspace recovery [21–24]. One
of the related models to our work is [21]. Liu et al. proposed a low-rank mini-
mization framework to recover the subspace structures in the presence of noise,
outliers, and corruption. The main interest of those works, however, is to analyze
the subspace structures of a given set of observation points without considering
how it generalizes to unseen data. For that reason, [21] first constructs a dic-
tionary, and keeps it unchanged throughout the process. On the contrary, our
model is designed for classification purpose and therefore the generative power
is important. We learn a set of dictionaries that best represent the observa-
tion points. The recovery of the subspace structures in our model facilitates the
dictionary learning and enhances the representation.

2 Preliminaries

2.1 Subspace learning via low-rank minimization

Suppose we have a set of corrupted data points (in columns), X = [x1, x2, ..., xn],
drawn from a union of multiple subspaces S1, ...,Sk. We wish to decompose the
data matrix as the sum of a clean, self-expressive, and low-rank matrix plus a
matrix of noise or outliers. This can be achieved by solving:

Z∗ = arg min
Z

rank(Z) + γ‖E‖l, s.t.X = DZ + E (1)

where D is a pre-defined dictionary that linearly spans the entire data space,
and Z is the representation with respect to D. The optimal solution is then
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used for estimating the lowest-rank recovery of the corrupted data DZ∗1. With
replacement of the rank function with the nuclear norm, the problem becomes a
convex optimization and can be solved by the Augmented Lagrange Multiplier
(ALM) algorithm, also known as an alternating direction method:

Z∗ = arg min
Z
‖Z‖∗ + γ‖E‖l, s.t.X = DZ + E (2)

Depending on the error types in different applications, one can choose:

– l = 0 to model element-wise sparse error. As minimizing the l0 norm is NP
hard, the l1 norm is often employed as a good relaxation, which is defined
by ‖E‖1 :=

∑
i,j |[E]i,j |.

– l = 2 to model Gaussian noise (white noise). ‖E‖2 :=
√∑

i,j |Ei,j |2.

– l = 2, 1 to model sample-wise sparse error. This is suitable when outliers and
corruption exist. ‖E‖2,1 :=

∑
i ‖[E]:,i‖2.

In most of the literature, the dictionary D in (2) is pre-defined. In particular,
by setting D = X, one essentially assumes that any data point (column of X) can
be represented by a linear combination (with the coefficients given by columns
of Z) of all the other points in the same subspace. Columns of Z thereby are
considered as new representations of the original points [21].

Low-rank minimization and subspace structure recovery have been success-
fully used in applications such as data clustering, image denoising, saliency detec-
tion, and recognition and classification. In particular, for recognition and classi-
fication where the dataset contains multiple subjects, samples of one subject are
considered to be drawn from the same linear subspace, while samples of different
subjects are drawn from different linear subspaces. However, for video-based face
recognition, it is beneficial to consider a nonlinear subspace or multiple linear
subspaces for one subject because of large appearance variations [4, 5, 14,15].

2.2 Dictionary learning for sparse representation

Suppose we have the original training data X = [X1, X2, ..., Xc], where Xi is the
data from the ith class. We wish to learn a set of bases Di, called ”dictionaries”,
such that the projection of Xi to the bases is ”sparse”, i.e.

min
Di,Zi

‖Xi −DiZi‖2F , s.t. ‖zj‖ ≤ T0,∀j = 1, ..., ni (3)

where Zi = [z1, z2, ..., zni ] is the sparse representation of the original data Xi

with respect to Di. T0 is the sparsity constant which specifies the maximum
number of nonzero elements.

The standard solution to (3) alternates between sparse coding and dictio-
nary learning. There are many off-the-shelf algorithms to find the sparse codes
for a given dictionary, such as Orthogonal Matching Pursuit (OMP), coordinate

1
Here and for the rest of the paper, a variable with a superscript * denotes the optimal solution.
One should not confuse the notation with the symbol of Hermitian transpose.
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descent, first-order/proximal methods, etc. Conversely, given the sparse repre-
sentation, one can derive the optimal dictionary by finding the least-square-based
closed form solution, or adopt the popular K-SVD algorithm [25] for its compu-
tational efficiency.

3 Joint discriminative dictionary learning and subspace
structure recovery for videos

3.1 Problem formulation

Suppose we have a set of cropped faces from the training videos (gallery) for

N people. Denote the face sequence of person i as Xi = [x
[i]
1 , ..., x

[i]
ni ], where

x
[i]
j is a column feature vector that describes the jth face in the sequence for

person i. Due to facial expression, pose, and illumination changes, we assume that

x
[i]
j , j = 1, ..., ni are noisy data points drawn from a union of an unknown number

of subspaces. The objective is to learn a dictionary Di that: (1) is good for
reconstruction; (2) yields a new representation Zi, which has low rank and reveals
the multiple subspace structure of the ”clean” data. This can be formulated as
the following optimization problem:

< Di, Zi >= arg min
Di,Zi

‖Zi‖∗ + λ‖Ei‖2,1 + η‖Di‖2F ,

s.t.Xi = DiZi + Ei, for all i. (4)

The first term is the low-rank requirement. The second one, which is the l2,1
norm of the reconstruction error, encourages accurate reconstruction while tol-
erating sample-specific corruption such as occlusion and outliers. The choice of
the trade-off parameter λ depends on the nature of the data. For example, if
the person’s face in a video appears to be fairly still (with small changes in
pose and expression) and switches to another still pose very quickly, then that
means that the data points are lying in the subspaces with few outliers, there-
fore the low-rank constraint should be relaxed and the dictionary should aim
to achieve better reconstruction. Conversely, if the person’s facial expression or
pose changes gradually over time with no obvious cutoff, then the low-rank con-
straint should be emphasized more so it allows the dictionary to capture key
features. The third term is the regularization.

3.2 Optimization

For the rest of this section, the class index i is dropped for convenience. Following
the standard procedures of the Augmented Lagrangian Multiplier method, we
introduce auxiliary variables J, Y1, Y2 and µ. The optimization problem above
becomes:

min
D,Z,E,J

‖J‖∗ + λ‖E‖2,1 + η‖D‖2F , s.t.X = DZ + E,Z = J (5)
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Algorithm 1 Video-based face recognition by JLDSS

Input: X1, X2, ..., XC , Y , λ, and η
Output: Recognition p
Initialization:

Initialize Di by finding the first d principle components on columns of Xi.
Training:
for i=1:C do

Learn Di and Zi by Algorithm 2 (JLDSS), given Xi, Di, λ, and η.
end for
D = [D1|D2|...|DC ]

Testing:
Find Zy in (12) by Algorithm 2 without updating D, given Y , D, and λ.
Recognize p given by equation (13).

with the Lagrangian function given by

L(D,Z, J,E, Y1, Y2, µ) = ‖J‖∗ + λ‖E‖2,1 + η‖D‖2F + 〈Y1, X −DZ − E〉+ 〈Y2, Z − J〉

+
µ

2

(
‖X −DZ − E‖2F + ‖Z − J‖2F

)
(6)

where 〈A,B〉 = trace(ATB). This problem can be optimized in an alternating
way described as follows. In each iteration, it first solves for Z with D fixed, and
then solves for D with Z fixed. Repeat until the convergence is achieved.

Solve for Z With D fixed, (5) becomes a typical low-rank minimization prob-
lem with auxiliary variable J :

min
Z,J,E

‖J‖∗ + λ‖E‖2,1, s.t.X = DZ + E,Z = J (7)

with solutions given by,

J∗ = arg min
J

1

µ
‖J‖∗ +

1

2
‖J − (Z + Y2/µ)‖2F (8)

Z∗ = (I +DTD)−1
(
DT (X − E) + J + (DTY1 − Y2)/µ

)
(9)

E∗ = arg min
λ

µ
‖E‖2,1 +

1

2
‖E − (X −DZ + Y1/µ)‖2F (10)

Details of derivation are provided in the supplemented material.

Solve for D Once we have updated Z, J , and E, the Lagrangian function (6)
becomes a quadratic function ofD. Finding the solution to∇DL(D;Z, J,E, Y1, Y2, µ) =
0 is equivalent to:

min
D

{
η‖Di‖2F + 〈Y1, X −DZ − E〉+

µ

2
‖X −DZ − E‖2F

}
(11)

which has a closed form solution: (D∗)T =
(

2η
µ
I + ZZT

)−1

Z
(

(X − E) + Y1
µ

)T
.

See the supplemented material for derivation.
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The advantage of our method is that for each class, it seeks a solution for
D and Z simultaneously without conducting explicit subspace clustering. Yet if
one wants to, one can easily find the subspace structure by performing spectral
clustering on Z [21]. The typical matrices are displayed in Figure 2(d) and
2(e). It clearly shows that the video contains 3 distinct poses or illumination
conditions.

We describe the complete algorithm in Algorithm 1.

Algorithm 2 JLDSS: Jointly Learning Dictionary and Subspace Structure

Input: X, D0, λ, and η
Output: D and Z
Initialization:
Z = J = 0, D = D0, E = 0, Y1 = 0, Y2 = 0, µ = 10−6, µmax = 106, ρ = 1.1, and

tol = 10−6

while not converge do
Update J ← J∗, where

J∗ = arg min
J

1

µ
‖J‖∗ +

1

2
‖J − (Z + Y2/µ)‖2F

Update Z ← Z∗, where

Z∗ = (I +DTD)−1
(
DT (X − E) + J + (DTY1 − Y2)/µ

)
Update E ← E∗, where

E∗ = arg min
λ

µ
‖E‖2,1 +

1

2
‖E − (X −DZ + Y1/µ)‖2F

(For recognition, skip this step) Update the dictionary D ← D∗, where

(D∗)T =

(
2η

µ
I + ZZT

)−1

Z

(
(X − E) +

Y1

µ

)T
Update the parameter µ← min(ρµ, µmax)
Update the multipliers

Y1 ← Y1 + µ(X −DZ − E), Y2 ← Y2 + µ(Z − J)

Check the convergence conditions: ‖X −DZ − E‖∞ < tol and ‖Z − J‖∞ < tol.
end while

3.3 Recognition

Once we obtain the class-specific dictionaries D1, D2, ..., DC , the global dictio-
nary is the concatenation, i.e. D = [D1|D2|...|DC ]. Denote the test sequence
(query) of a face as Y. We assume all the faces belong to a single subject to be
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recognized. The low-rank representation is given by:

Zy = arg min
Zy

‖Z‖∗ + λ‖Ey‖2,1, s.t. Y = DZy + Ey (12)

Suppose we have d dictionary atoms for each class-specific dictionary. The first
d rows of Zy correspond to the dictionary of the 1st class; the second d rows, or
the (d + 1)-th to the 2d-th rows, of Zy correspond to the dictionary of the 2nd
class; and so on. Denote the k-th d rows of Zy as Zy,k. Choose the subject p∗
with the best reconstruction given by Dk and Zy,k as our recognition decision:

p∗ = arg min
k∈1,...,C

‖Y −DkZy,k‖2,1 (13)

4 Experiments

We evaluated the proposed method on three data sets for video-based face recog-
nition: Honda/UCSD video database [12], the CMU Motion of Body (MoBo)
database [26], and the more challenging YouTube Celebrities Face Tracking and
Recognition dataset [11].

4.1 Comparison methods

The methods we compare ours against include:

– A linear subspace method: discriminative canonical correlations (DCC) [14];
– A nonlinear manifold method: manifold discriminant analysis (MDA) [15];
– An affine subspace method: sparse approximated nearest point (SANP) [1];
– A covariance-on-manifold method: covariance discriminative learning (Cov+PLS)

[2];
– A manifold alignment method: image sets alignment (ImgSetsAlign) [3];
– A dictionary based method: sparse representation for video (SRV) and its kernel-

ized version KSRV [5]. The higher recognition rates between the two versions are
adopted for comparison, which we denote as (K)SRV.

We compare our method especially to the dictionary-based method (K)SRV to
show the effect of learning subspace structure with the dictionary without per-
forming video partitioning. The recognition rates for other competing methods
are cited directly from their papers, except for (K)SRV in Honda/UCSD, be-
cause [5] had a slightly different setting.

4.2 Experimental Set-up

For all experiments, we extracted face sequences by a cascaded face detector [27],
and resized them to 20*20 gray images (30*30 for YouTube Celebrities database).
The feature vectors are simply the vectorized faces with histogram equalization
for reducing lighting effects. We also doubled the size of the gallery by adding the
mirror-symmetric faces. This avoids the tendency of assigning unknown profile
faces to the one with similar poses in the gallery.
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Honda/UCSD Database There are 59 videos for 20 people in a wide range
of different poses in Honda/UCSD database. Each person has at least 2 videos.
We randomly selected 1 video as training and tested on the rest, and repeated
for 10 times. To follow the procedures in [1], we tested four cases of maximum
set length: 50, 100, and full length. Note that for 50/100 maximum length, we
tested on the first 50/100 frame as an standard setting, as well as on randomly
selected 50/100 frames as in [5] for fair comparison. With the randomly chosen
frames, we achieved 100% accuracy for both 50 frames case and 100 frames
case. The average recognition rates over 10 trials under the standard setting are
reported in Table 1. Our rates are obtained by setting the dictionary size d = 10.
Performance is not sensitive to the choices of λ and η. We outperform all other
methods in all settings.

CMU MoBo Database The CMU MoBo contains 96 sequences of 24 subjects,
each of which has 4 sequences (roughly 300 frames each) captured in different
walking situations. We performed 10-fold cross validation where 1 video was ran-
domly chosen as training and the remaining 3 for testing. The average recognition
rate is shown in Table 1. For our method, we set d = 20, λ = 0.1, and η = 0.01.
For (K)SRV, we set the number of partitions K = 3. The dictionary size for
each subject is d = 7 ∗ 3 (7 for each partition), which is comparable to 20 in our
method. Again we achieved the best performance among all.

YouTube Celebrities The YouTube Celebrities contains 1910 video clips of
47 human subjects from YouTube. Roughly 41 clips were segmented from 3
unique videos for each person. This dataset is challenging because it contains a
lot of noise and facial variations (see Figure 2(a)). Following the standard setup,
we selected 3 training clips, 1 from each unique video, and 6 test clips, 2 from
each unique video, per person. The performance of all methods is summarized
in Table 1. Our rates are obtained by setting d = 30, λ = 0.1, and η = 0.001.

To the best of our knowledge, the top performance levels on this dataset
are reported as 80.75% in [7], 78.9% in [6], and 74.6% in [3]. However, their
experiments employed different protocols from the standard one. [7] not only
benefits from its own tracker, which gives 92% success rate versus 80% using the
standard tracker, but also takes advantage of sophisticated features including
LBP, HOG and Gabor wavelets. Other methods only use 30*30 vectorized faces
as features. [6] only tested on the videos of the first 29 celebrities out of 47,
which makes the task easier than the standard one. Recognition rates are of
course higher when a smaller number of subjects are included. In addition to the
3 training clips for each subject in the gallery, [3] uses one more sequence from
any subject as a reference for alignment. This gives their method an advantage
of seeing more faces in the gallery. We also noticed that [3] reported higher
recognition rates than the literature for the competing methods that we also used
for comparison: DCC: 0.673 in [3] vs 0.648 in [2], and MDA: 0.676 [3] vs 0.653
[16], suggesting a systematic bias might exist. Under the standard settings, our
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Table 1. Recognition rates on three databases. We cited the recognition rates of the
competing methods from the literature except for (K)SRV. The highest rate in each
experiment is highlighted in bold font. In the last row, the number with the superscript
* was achieved by employing a different protocol than the standard one.

Dataset DCC [14] MDA [16] SANP [1]
Cov+ ImgSets (K)SRV

Our method
PLS [2] Align [3] [5]

Honda/ 50 frames 0.769 0.744 0.846 - - 0.846±0.02 0.872±0.01
UCSD 100 frames 0.846 0.949 0.923 - - 0.964±0.02 0.974±0.01
[12] full length 0.949 0.974 1.000 1.000 0.989 0.974±0.01 1.000

Average 0.856 0.889 0.923 - - 0.931±0.01 0.949±0.01

CMU MoBo [26] 0.903 0.947 0.900 0.941 0.950 0.952±0.03 0.968±0.02

YouTube [11] 0.648 0.653 0.684 0.701 0.746* 0.684±0.03 0.723±0.03

performance is the best, and it could be further improved with better tracking
and advanced features.

4.3 Analysis and Discussions

As seen in Table 1, we consistently outperformed other competing methods in all
datasets under all settings, especially compared with the other dictionary-based
method [5]. We take the video clips for one subject from YouTube Celebrities as
an example to further demonstrate the benefit of jointly learning a dictionary
and subspace structure.

The Effect of λ The comparison between Figure 2(b) and 2(c) shows the effect
of the choice of λ, which is the trade-off between low-rank and reconstruction ac-
curacy. When λ is small, we assume the data is more uniform, thus the dictionary
atoms from the same subspace look very similar to each other in Figure2(b).The
faces which look different from the dictionary atoms are considered as outliers.
When λ is large, we assume the data contains large variations and therefore
put more emphasis on the reconstruction accuracy. As a result, the dictionary
contains faces with more variety as shown in Figure 2(c). The corresponding
low-rank representations also reflect the impact of choosing different λ, where
the columns of the matrix in Figure 2(d) look quite similar to each other while
the columns in Figure 2(e) are much more diverse. However, the subspace seg-
mentation results are the same.

Low-rank Matrix Interpretation Figure 2(d), 2(e) show a typical low-rank
representation of original faces from training videos constructed by our method,
which has a block diagonal structure indicating the subspace structure of the
data. The brightness indicates the value of each entry, where the darkest entries
are zeros. Looking at the columns, one can easily construct a similarity matrix
and apply spectral clustering to it if explicit segmentation is desired. Further-
more, since each row of the matrix corresponds to the coefficients of a particular
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(a) A sequence of cropped faces from 3 training videos

(b) Our dictionary with λ=0.01 (c) Our dictionary with λ=0.1

(d) The low-rank matrix with λ=0.01 (e) The low-rank matrix with λ=0.1

Fig. 2. An example of the training faces from YouTube Celebrities database (a), the
dictionaries (b) (c), and the low-rank representations (d) (e).

dictionary atom, the row structure also reflects the structure of the dictionary.
A skinny and tall block in the low-rank matrix suggests a relatively short clip
with large variation, so that it requires many dictionary atoms to represent it,
whereas a fat and short block indicates a long clip with little variation so that
only a small number of dictionary atoms are needed.

Dictionary Comparison Figure 2(a) shows the sequence of cropped faces from
our training clips, where the red line shows the true partition of the sequence
that is used in our implementation of [5]. The dictionaries learned by both meth-
ods with d = 30 are shown in Figure 3. It clearly shows the limitations of
the partition-level dictionaries. First, [5] assigns the same number of dictionary
atoms regardless of the length and variation present in each clip. The first clip
obviously contains much larger variation than the second clip. As a result, the
first 10 dictionary faces learned by SRV [5] are blurry, indicating the dictionary
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(a) Our dictionary with λ=0.1 (b) Dictionary learned by SRV

Fig. 3. Dictionary comparison of our method and SRV [5] using the true video parti-
tions. The red dashed lines separate the partition-level sub-dictionaries.

is not big enough to capture the variation, while the second 10 dictionary faces
are more or less uniform, indicating 10 atoms are more than necessary. Increas-
ing the size of dictionary or the number of partitions might help, but with bigger
dictionaries the computational cost will increase dramatically, especially in the
testing stage when partition-level decisions need to be made. In addition, SRV
suffers from the unknown length of each partition. In such situations where the
shortest partition contains fewer frames than the size of sub-dictionary, artificial
frames need to be inserted to obtain an augmented partition. In contrast, our
method enjoys the flexibility of no explicit partitioning, so that the dictionary
reflects the distribution of the training data.

5 Conclusion and Future Work

We introduced a novel joint learning framework for video-based face recognition.
We modeled the set of faces as a union of multiple subspaces, and attempted to
find a global dictionary that reveals the subspace structure. To achieve this goal,
we proposed an objective function that encourages low-rank representation and
reduces reconstruction error. We explained how our optimization problem can
be solved with an alternating minimization algorithm. Finally, we conducted ex-
periments on three data sets which resulted in the state-of-the-art performance.
Future work to achieve better VFR includes running the face tracker and iden-
tifying the faces online, incorporate alignment with recognition, and developing
a more effective down-sampling method that resizes the tracked face images to
smaller size but preserves discriminative information.

Acknowledgement. This work was supported by the Army Research Office
MURI Grant W911NF-09-1-0383. We also thank Dr. Ruiping Wang for sharing
the processed data.



14 Guangxiao Zhang, Ran He, Larry S. Davis

References

1. Hu, Y., Mian, A., Owens, R.: Sparse approximated nearest points for image clas-
sification (2011) Proceedings of EEE Conference on Computer Vision and Pattern
Recognition.

2. Wang, R., Guo, H., Davis, L., Dai, Q.: Covariance discriminative learning: A
natural and efficient approach to image set classification (2012) Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition.

3. Cui, Z., Zhang, H., Lao, S., Chen, X.: Image sets alignment for video-based face
recognition (2012) Proceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition.

4. Chen, Y.C., Patel, V., Phillips, P., Chellappa, R.: Dictionary-based face recognition
from video (2012) Proceedings of European Conference of Computer Vision.

5. Chen, Y.C., Patel, V., Shekhar, S., Chellappa, R., Phillips, P.: Video-based face
recognition via joint sparse representation (2013) Proceedings of IEEE Conference
on Automatic Face and Gesture Recognition.

6. Yang, M., Zhu, P., Zhang, L.: Face recognition based on regularized points between
image sets (2013) Proceedings of IEEE Conference on Automatic Face and Gesture
Recognition.

7. Ortiz, E., Wright, A., Shah, M.: Face recognition in movie trailers via mean se-
quence spars representation-based classification (2013) Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition.

8. Shakhnarovich, G., Fisher, J., Darrell, T.: Face recognition from long-term obser-
vations (2002) Proceedings of European Conference on Computer Vision.

9. Satoh, S.: Conparative evaluation on face sequence matching for content-based
video access (2000) Proceedings of IEEE Automatic Face and Gesture Recognition.

10. Kreger, V., Zhou, S.: Exemplar-based face recognition from video (2002) Proceed-
ings of European Conference on Computer Vision.

11. Kim, M., Kumar, S., Pavlovic, V., Rowley, H.: Face tracking and recognition with
visual constraints in real-world videos (2008) Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition.

12. Lee, K., Ho, J., Yang, M., Kriegman, D.: Visual tracking and recognition using
probabilistic appearance manifolds (2005) Proceedings of Computer Vision and
Image Understanding.

13. Cevikalp, H., Triggs, B.: Face recognition based on image sets (2010) Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition.

14. Kim, T., Arandjelovic, O., Cipolla, R.: Discriminative learning and recognition
of image set classes using canonical correlations. IEEE Transactions on Pattern
Analysis and Machine Intelligence 29 (2007) 1005–1018

15. Wang, R., Shan, S., Chen, X., Gao, W.: Manifold-manifold distance with applica-
tion to face recognition based on image set (2008) Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition.

16. Wang, R., Chen, X.: Manifold discrimininant analysis (2009) Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition.

17. Chen, S., Sanderson, C., Harandi, M.T., Lovell, B.: Improved image set classifica-
tion via joint sparse approximated nearest subspaces (2013) Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition.

18. Huang, Z., Shan, S., Wang, R., Chen, X.: Coupling alignments with recognition for
still-to-video face recognition (2013) IEEE International Conference on Computer
Vision.



Jointly Learning Dictionaries and Subspace Structure for VFR 15

19. Lu, J., Wang, G., Moulin, P.: Image set classification using holistic multiple order
statistics features and localized multi-kernel metric learning (2013) IEEE Interna-
tional Conference on Computer Vision.

20. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via
sparse representation. 31 (2009) 210–227 IEEE Transactions on Pattern Analysis
and Machine Intelligence.

21. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation
(2010) International Conference on Machine Learning.

22. Elhamifar, E., Vidal, R.: Sparse subspace clustering: Algorithm, theory, and ap-
plications. IEEE Transactions on Pattern Analysis and Machine Intelligence 35
(2013) 2765–2781

23. Favaro, P., Vidal, R., Ravichandran, A.: A closed form solution to robust subspace
estimation and clustering (2011) Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition.

24. He, R., Sun, Z., Tan, T., Zheng, W.S.: Recovery of corrupted low-rank matrices
via half-quadratic based non convex minimization (2011) Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition.

25. Aharon, M., M., E., Bruckstein, A.: K-svd: An algorithm for designing overcom-
plete dictionaries for sparse representation. IEEE Transactions on Signal Process-
ing 54 (2006) 4311–4322

26. Gross, R., Shi, J.: The cmu motion of body (mobo) database. Technical Report
CMU-RI-TR-01-18, Robotics Institute, Pittsburgh, PA (2001)

27. Viola, P., Jones, M.: Robust real-time face detection. International Journal of
Computer Vision 57 (2004) 137–154


